Mari Kita Kenali Konsep Dasar Dari Kecerdasan Buatan AI Part 2.

Pembelajaran Mendalam (Deep Learning).

Pembelajaran mendalam adalah teknik pembelajaran mesin yang mengajarkan komputer untuk melakukan apa yang secara alami terjadi pada manusia belajar dengan cara mencontoh. Itu memungkinkan mereka untuk mengenali tanda berhenti, atau untuk membedakan pejalan kaki dengan tiang lampu. Ini adalah kunci dari kontrol suara di perangkat konsumen seperti ponsel, tablet, TV, dan speaker hands-free. Pembelajaran mendalam mendapatkan banyak perhatian belakangan ini. Dan juga karena dapat mencapai hasil yang sebelumnya tidak mungkin. Dalam deep learning, model komputer belajar untuk melakukan tugas klasifikasi langsung dari gambar, teks, atau suara. Model pembelajaran yang mendalam dapat mencapai akurasi yang canggih, terkadang melebihi kinerja tingkat manusia. Model di latih dengan menggunakan set besar data berlabel dan arsitektur jaringan saraf yang berisi banyak lapisan.

Jaringan Saraf Tiruan (Neural Network).

Neural Network atau juga di sebut sebagai jaringan saraf tiruan adalah berbagai teknologi pembelajaran yang mendalam. Dan juga yang berada di bawah naungan kecerdasan buatan atau AI. Neural Network adalah paradigma pemrosesan informasi yang terinspirasi dari cara sistem saraf biologis, seperti otak yang memproses informasi. Kunci elemen dari paradigma ini adalah struktur novel dari sistem pemrosesan informasi.

Neural Network dikonfigurasikan untuk aplikasi tertentu, seperti pengenalan pola atau klasifikasi data melalui proses pembelajaran. Jaringan ini terdiri dari sejumlah besar elemen pemrosesan yang sangat saling berhubungan (neuron) yang bekerja bersama untuk memecahkan masalah tertentu. Aplikasi komersial dari teknologi ini umumnya berfokus pada penyelesaian pemrosesan sinyal yang kompleks atau masalah pengenalan pola. Contoh aplikasi komersial yang signifikan sejak tahun 2000 meliputi pengenalan tulisan tangan untuk pemrosesan cek, transkripsi ucapan menjadi sebuah teks, analisis data, dan prediksi cuaca dan pengenalan wajah.

Jaringan saraf tiruan ini terinspirasi oleh hal-hal yang kita temukan dalam biologi kita sebagai manusia. Cara Neural Network memahami sesuatu sama seperti manusia yaitu belajar dengan cara mencontoh. Model jaringan saraf menggunakan prinsip matematika dan ilmu komputer untuk meniru proses otak manusia. Jaringan saraf tiruan mencoba mensimulasikan proses sel-sel otak yang saling berhubungan erat, tetapi bukannya dibangun dari biologi, neuron-neuron ini dibangun dari kode atau biasa disebut node.

Tinggalkan Komentar

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *